

Birzeit University Faculty of Engineering Electrical Engineering Department Network Analysis I , ENEE 231 Final Exam

14 May 2012Mr. Hussein Zeitawi & Mr. Ashraf Al-RimawiTime: 150 minStudent Name:ID Number:

Instructions:

- 1. Closed book, closed notes, open-mind exam.
- 2. Write neatly and clearly for partial credit.
- 3. Cross out any material you don't want to be graded.
- 4. Work all problems in the exam booklets

Question #1 (20 Marks): For the circuit shown in figure 1 , find v_x using Nodal Analysis Only

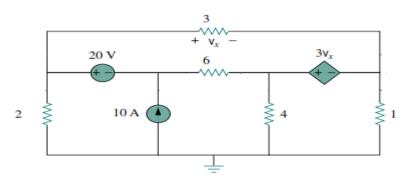


Fig 1 Question #2 (20 Marks_10 each): For the circuit as shown in figure 2

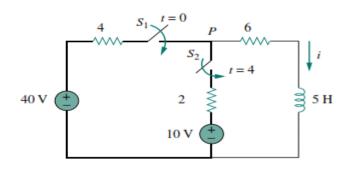
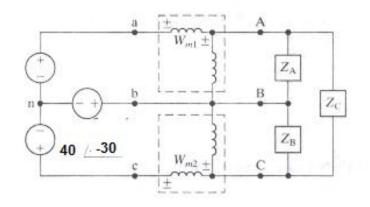



Fig2

- a. Find i for $t \ge 0$
- b. Calculate i for t = 2 sec, and t = 5 sec

Question #3 (20 Marks_10 each): The unbalanced -three phase loads shown in figure 3 is fed from balanced , positive (abc) sequence three phase Y-connected source, if $Z_A = 20 \angle 30^0 \Omega$, $Z_B = 60 \angle 0^0 \Omega$, $Z_C = 20 \angle -30^0 \Omega$.

- a. Calculate the reading of each wattmeter
- b. Verify that the sum of the two wattmeter readings equals the total average power delivered to the load.

Question #4 (20 Marks):

Three 100 Vrms loads are connected in parallel. Load 1 is a 50 Ω resistor in series with an inductive reactance of 40 Ω . Load 2 absorbs an average power of 500 W at 0.75 lagging power factor. Load 3 absorbs an apparent power of 600 VA at 0.9 lagging power factor. Assume the circuit is operating at 60 Hz. Compute the value of a capacitor that would correct the power factor to 1 if placed in parallel with the loads.

Question #5 (20 Marks_10 each):

A) Find the impedance Z_{ab} in the circuit in figure 4 if $Z_L = 200 + j150 \Omega$

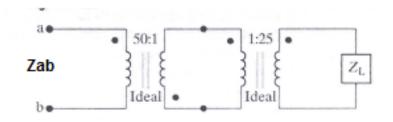


Fig 4

B) For the circuit in figure 5 , find $v_0(t)$ using **Source Transformation**

